a2 United States Patent

Pham et al.

US009229893B1

US 9,229,893 B1
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR MANAGING
DIRECT MEMORY ACCESS OPERATIONS

(71)

(72)

(73)

")

@
(22)
(1)
(52)

(58)

Applicant: QLOGIC, Corporation, Aliso Viejo,

CA (US)

Inventors: Chuong HoangMinh Pham, Fountain
Valley, CA (US); Dharma R. Konda,
Aliso Viejo, CA (US)

Assignee: QLOGIC, Corporation, Aliso Viejo,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/264,957

Filed: Apr. 29, 2014

Int. CL.

GO6F 13/28 (2006.01)

U.S. CL

CPC i GO6F 13/28 (2013.01)

Field of Classification Search

None

See application file for complete search history.

400
N

(56) References Cited

U.S. PATENT DOCUMENTS

8,271,700 B1* 9/2012 Annemetal. ... 710/26
2001/0001867 Al* 5/2001 Colliercccoeuni. GO6F 13/28
710/33

2005/0207407 Al* 9/2005 Baumberger HO4L 49/90
370/389

2013/0010198 Al* 12013 Chitnisc.ooe.. HO4N 5/268
348/660

* cited by examiner

Primary Examiner — llwoo Park
(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Methods and systems for DMA operations are provided. A
plurality of control blocks are stored at a memory of a receive
module of a device coupled to a computing device, where the
control blocks store information regarding data packets
stored at a receive buffer accessible to the receive module. At
least a first control block and a second control block are
retrieved from the memory; and a first DMA register set is
assigned to the first control block and a second DMA register
set is assigned to the second control block. The first control
block and the second control block are simultaneously pre-
processed to configure the first DMA register set and the
second DMA register set.

21 Claims, 7 Drawing Sheets

B408
i

If not, request
additional buffers

B416

If a “Next” bit is set
retrieve the next
control block B418

Y

B428
5

1f T10 or digest are
enabled, issue a
request for 710 or
digest from MIM
B430

Process T10 or
digest to packet

B432
¥

__l

If next control block is a completion then send

it to HQM 142 B420

I_.

Read Operation code| |Read Operation code || Read operation Read
to Send data to to send data to code to send data operation
Ancnymous buffer specific host address to host code to send
3 B422 using address completion
Request buffer pool list/SGL B434 B440
B410 Request host buffer 3 ¥
pool B424 Setup RXB DM Setup DMA
Setup DMA registers vy IIF 226 B436 for sending
at RXB IfF 226 and Setup DMA registers completion
DTH I/F 206 B412 | | @ RXB UF 226 and Issue ALCB B442
1 DTH I/F 206 B426 request to
Verify Buffer size is _ Minm 172 B438
more than Packet If transfer length is
size B414 more than host
'r‘ buffer, request
additional buffer B444 Done

U.S. Patent Jan. 5,2016 Sheet 1 of 7 US 9,229,893 B1
Host System Memory
| 102
104 104N loce 116
((Instructions
Processor | ®®® | Processor 118
¢ 108 ¢ i 106
i | i b
Storage Adapter I/F Other Devices
& I/F
U0 t Lo L
120
—
124
Y
/ Adapter
100 114

FIG. 1A

US 9,229,893 B1

Sheet 2 of 7

Jan. 5, 2016

U.S. Patent

aogl 2091 al .mu_nm__ow_\ v09l
ST [- [L - [:
ﬁNm ‘ v ¥ v ol
a|npopy —_ .
HsuiL val xa|dwod Hod Wvd
(agsl) P
xeidwod | | (com) 184Ny SAIS08Y 1 Jedng jiwsuel < » 10SS900Id
gowmmoog& Emﬁw\Aw — A y A _|||||I|I'" wmo.u_(:\gn_ _wgwcmo
xw_a__coo | Buinenp I3 wa;
108s58501d obessal |
<wv1 t >
mwr_w.Tommmooi Buinpsyog __A|| = Aw,_.ﬂ._\m_v
ON@\ JeBeuepy Buinpayss fI ~| sinpopy 891
E,uf_; 108580014 Uope|dwo? [l 9eLN | [PELN ACE L MWMWM_M__ g JMM%_E
mm@\ 1sBeuep uons|dwon <m,m_\ IRy I | NN
Verll obeue soung SV | ECEESGIRERT | el KT _Hugomwo_\w_ma - 1ebeuey
NNWI 1sBeuepy VNG enosy || PHRUSO | ININY s ier) 1817 Alowapy
|nanp 1soH [Jeung xy || lsng || Jegng xi _/Nm_\ ro\._\
Q7] Hld
Oc | ®oepsiy|
ooel/ gogl F50, VOEL

U.S. Patent Jan. 5,2016 Sheet 3 of 7 US 9,229,893 B1

F:-N
~—124
a A
A\ 4
a PTH ~—~128
7y 136
Packet Data S
170~ MLM |« < » GDE
—138
Anonymous
172~ MIM L RxDMA < Buffers
Completions
156A—~ RXB B> > HQM
A F -\ +
o 1212
Processor
162~ MGT Complex —148
\ /

FIG. 1C

US 9,229,893 B1

Sheet 4 of 7

Jan. 5, 2016

U.S. Patent

vl
WOH

. = vogl
¢ Old 195 Bay ||[195 Bad ||| v/
_| x@idwo)d 29l YIND vYiNa fljonuon
8vl lossaooid LOW 0l ! - ~ |
4/1 gXd -
oolg %00l 101uo oY P g —1
y [01U0D W m,,. NWN yzZe m 198 Bay [g >
[50z sonav-ao | = g el Lvng | |leatoo w,__.*\”
e no... ~d o P
| onsidwon © voneldwon| & S o & ENR >
B P Yy 11 7 _c_ a1eIpallly] 7 »
SNoWwAUOUY f\onam % Ou. n dnusyy Ve e Vil
31200 1o4u09 u.woll_ - ! Kowapy
5 [oger] 02 = | L2209] o0
1ayng woig | V8L [— : —
onuos”| Ndo | A,I)Hm"_ ainpo 189610 0ce w
{ > viNg o 891}
O4ld
v O4id Odid e
Tabeuep 02 dwoy || 1evpoed m_wﬁ ap—9le
oneng “ N\
w AN // Z b2
02 NZ m v gle
geT {|19s By _ HINOVd
voEl N T™01¢
YINOXY (velz|| =2l ALA8 007
Y v / 128 mmm
VOLL— 41 wWIN 41309 TN VING _ 4/ H1d T~80¢
04 L) A
M M OJUOD ¥ v
Sy ¥ Sy v Hld _\l\wN_‘
osLb—{ww] [3a9 }—oel H

U.S. Patent Jan. 5,2016 Sheet 5 of 7 US 9,229,893 B1

(_stat_>—B302

Pre-process first IOCB —B304

l

Initiate DMA operation for first IOCB —B306

l

Receive second IOCB request while first |IOCB

is being processed —B308
Pre-process second IOCB while first IOCB is
. —B310
being processed
300 l
Process second IOCB —B312

FIG. 3A

US 9,229,893 B1

Sheet 6 of 7

Jan. 5, 2016

U.S. Patent

<A
|

b
o

¢=pud — NBay VNG

é=pul — NGy VINC

o090

6oy YINT

1Bay VNG

069y YINQ

0bey VING

¢ 188 Bay VNG

Z 188 Bay vING

L€ | Jed

de€ 'old

4

¢=pug — NBey VING

¢=pug — NBay VNG

e

LBy VING

LBoy vING

obay VNG

0Bay vING

} 188 B9y VING

0 188 Bay vING

viL¢ 0ded

U.S. Patent Jan. 5,2016

Sheet 7 of 7

B402

US 9,229,893 B1

400)
\ Retrieve Contral block —B404
v
Check Operation code
(Op Code) ——B406
B408 v
{ _ l |
Read Operation code | |Read Operation code || Read operation Read
to Send data to to send data to code to send data operation
Anonymous buffer specific host address to host code to send
¥ B422 using address completion
Request buffer pool ¥ list/'SGL B434 B440
B410 Request host buffer v v
T pool B424 Setup RXB DM Setup DMA
Setup DMA registers v I/F 226 B436 for sending
at RXB I/F 226 and Setup DMA registers ¥ completion
DTH I/F 206 B412 at RXB I/F 226 and Issue ALCB B442
* DTH I/F 206 B426 request to
Verify Buffer size is v MIM 172 B438
If transfer length is

more than Packet

ize B414
Sre oo buffer, request
v additional buffer
If not, request B428
additional buffers T

more than host

B416

If a “Next” bit is set
retrieve the next

control block B418

If T10 or digest are
enabled, issue a

&

request for T10 or
digest from MIM

B430

-3

v

Process T10 or
digest to packet
B432

v

it to HQM 142 B420

If next control block is a completion then send

FIG. 4

US 9,229,893 B1

1
SYSTEMS AND METHODS FOR MANAGING
DIRECT MEMORY ACCESS OPERATIONS

TECHNICAL FIELD

The present invention relates to computing systems and
more particularly to managing direct memory access (DMA)
operations.

RELATED ART

Computing systems use adapters for sending and receiving
information to and from other network devices and storage
devices. Various protocols and standards are used for such
communication.

Adapters typically send information to a computing system
processor using DMA operations. Adapters continue to
become efficient and are expected to process DMA requests
quickly. In conventional systems, a control block is typically
used to setup a DMA operation. The control block may
include various DMA requests and the number of DMA
requests may vary from one control block to another. The
control blocks are pre-processed and then the DMA opera-
tions are executed. Pre-processing control blocks consume
computing resources and may cause delay in overall DMA
operation execution.

To maintain in-order delivery of information to the com-
puting system, control blocks are typically pre-processed
serially i.e. control block 1 is pre-processed first and then a
subsequent control block 2 is pre-processed. This can delay
over-all delivery of information to the computing system and
hence is undesirable. Continuous efforts are being made to
improve adapter performance and delivery of information to
the computing system.

BRIEF DESCRIPTION OF THE DRAWINGS

The various embodiments of the present systems and meth-
ods will now be discussed in detail with an emphasis on
highlighting the advantageous features. These embodiments
depict the novel and non-obvious systems and methods
shown in the accompanying drawings, which are for illustra-
tive purposes only. These drawings include the following
figures, in which like numerals indicate like parts:

FIG. 1A is a block diagram of a typical host system;

FIG. 1B is a block diagram of an adapter, according to one
embodiment;

FIG. 1C is a block diagram showing a receive (Rx) direct
memory access module interface, according to one embodi-
ment;

FIG. 2 shows a detailed block diagram of a Rx DMA
module, according to one embodiment; and

FIG. 3A is a process flow diagram for pre-processing a
plurality of control blocks, according to one embodiment;

FIG. 3B shows an example of using a plurality of DMA
register sets for pre-processing control blocks, according to
one embodiment;

FIG. 4 shows an example of pre-processing control blocks,
according to one embodiment.

DETAILED DESCRIPTION

The following detailed description describes the present
embodiments with reference to the drawings. In the drawings,
reference numbers label elements of the present embodi-

10

15

20

25

30

35

40

45

50

55

60

65

2

ments. These reference numbers are reproduced below in
connection with the discussion of the corresponding drawing
features.

As a preliminary note, any of the embodiments described
with reference to the figures may be implemented using soft-
ware, firmware, hardware (e.g., fixed logic circuitry), manual
processing, or a combination of these implementations. The
terms “logic,” “module,” “component,” “system,” and “func-
tionality,” as used herein, generally represent software, firm-
ware, hardware, or a combination of these elements. For
instance, in the case of a software implementation, the terms
“logic,” “module,” “component,” “layer” “system,” and
“functionality” represent executable instructions that per-
form specified tasks when executed on a hardware based
processing device or devices (e.g., CPU or CPUs). The pro-
gram code can be stored in one or more non-transitory, com-
puter readable memory devices.

More generally, the illustrated separation of logic, mod-
ules, components, systems, and functionality into distinct
units may reflect an actual physical grouping and allocation
of software, firmware, and/or hardware, or can correspond to
a conceptual allocation of different tasks performed by a
single software program, firmware program, and/or hardware
unit. The illustrated logic, modules, components, systems,
and functionality may be located at a single site (e.g., as
implemented by a processing device), or may be distributed
over a plurality of locations. The term “machine-readable
media” and the like refers to any kind of medium for retaining
information in any form, including various kinds of storage
devices (magnetic, optical, static, etc.).

The embodiments disclosed herein are implemented as a
computer process (method), a computing system, or as an
article of manufacture, such as a computer program product
or computer-readable media. The computer program product
may be non-transitory, computer storage media, readable by
a computer device, and encoding a computer program of
instructions for executing a computer process. The computer
program product may also be readable by a computing sys-
tem, and encoding a computer program of instructions for
executing a computer process.

System 100:

FIG. 1A is a block diagram of a system 100, according to
one embodiment. Certain standard and well-known compo-
nents, which are not germane to the present invention are not
shown in FIG. 1A. In one embodiment, system 100 includes
a computing system 102 (also referred to as a host system
102) that communicates with other devices via adapter 114
and anetwork link 122. Host system 100 includes one or more
processors 104 (shown as 104A-104N) and a memory 106,
both of which are coupled to a connection system (also
referred to as a bus system) 108. The bus system 108 is an
abstraction that represents any one or more separate physical
buses and/or point-to-point connections, connected by appro-
priate bridges, adapters and/or controllers. The bus system
108, therefore, may include, for example, a system bus, a
Peripheral Component Interconnect (PCI) bus, a Hyper-
Transport or industry standard architecture (ISA) bus, a SCSI
(Small Computer Systems Interface) bus, a universal serial
bus (USB), or an Institute of Electrical and Electronics Engi-
neers (IEEE) standard 1394 bus (sometimes referred to as
“Firewire”).

Processor 104 is the central processing unit (CPU) of the
processing system 100 and, thus, controls its overall opera-
tion. In certain embodiments, processor 104 accomplishes
this by executing programmable instructions stored in
memory 106. Processor 104 may be, or may include, one or
more programmable general-purpose or special-purpose

29 < 29 <

% <

US 9,229,893 B1

3

microprocessors, digital signal processors (DSPs), program-
mable controllers, application specific integrated circuits
(ASICs), programmable logic devices (PLDs), or the like, or
a combination of such hardware-based devices.

Memory 106 represents any form of random access
memory (RAM), read-only memory (ROM), flash memory,
or the like, or a combination of such devices. Memory 106
includes the main memory of host system 102. Processor 104
may execute machine-implemented instructions 118 for per-
forming certain tasks, as described below in more detail.
ROM stores invariant instruction sequences, such as start-up
instruction sequences or basic input/output operating system
(BIOS) sequences for operation of a keyboard (not shown).

In one embodiment, processor 104 generates an input/
output control block (IOCB) 116 that is stored at host memory
106 or at an adapter memory. IOCB 116 provides information
regarding a read or write operation. Adapter 114 uses infor-
mation from the IOCB 116 and generates an I/O request for
sending or receiving information.

Also connected to processor 104 through the bus system
108 are one or more internal mass storage devices 110, an
adapter interface 112 and other devices and interfaces 120.
The other devices and interfaces 120 may include a display
device interface, a keyboard interface, and a pointing device
interface.

Internal mass storage devices 110 (also referred to as stor-
age 110) may be, or may include any conventional medium
for storing data in a non-volatile manner, such as one or more
magnetic or optical based disks, flash memory devices, CD-
ROMs and others. Storage 110 stores operating system pro-
gram files, application program files, and other instructions.
Some of these files are stored on storage 110 using an instal-
lation program.

Host system 102 interfaces with adapter 114 via an adapter
interface 112 and a link 124. Adapter 114 may be configured
to send and receive information via link 122. In one embodi-
ment, adapter 114 is configured to handle information com-
plying with both network and/or storage protocols. Some
common network and storage protocols are described below.

One common network protocol used by adapter 114 may
be Ethernet based. The original Ethernet bus or star topology
was developed for local area networks (LAN) to transfer data
at 10 Mbps (mega bits per second). Newer Ethernet standards
(for example, Fast Ethernet (100 Base-T) and Gigabit Ether-
net) support data transfer rates between over 100 Mbps. The
description of the various embodiments described herein is
based on using Ethernet (which includes 100 Base-T and/or
Gigabit, 10 Gigabit, 40 Gigabit, 100 Gigabit Ethernet) as the
network protocol. However, the adaptive embodiments dis-
closed herein are not limited to any particular protocol, as
long as the functional goals are met by an existing or later
developed network protocol.

Adapter 114 may also use Fibre Channel (also referred to
as “FC”), which is a storage protocol used to access storage
systems and devices. Fibre Channel is a set of American
National Standards Institute (ANSI) standards that provide a
serial transmission protocol for storage and network proto-
cols such as HIPPI, SCSI, IP, ATM and others. Fibre Channel
supports three different topologies: point-to-point, arbitrated
loop and fabric. The point-to-point topology attaches two
devices directly. The arbitrated loop topology attaches
devices in a loop. The fabric topology attaches host systems
directly (via HBAs) to a fabric, which are then connected to
multiple devices. The Fibre Channel fabric topology allows
several media types to be interconnected. Fibre Channel fab-
ric devices include a node port or “N_port” that manages

10

15

20

25

30

35

40

45

50

55

60

65

4

Fabric connections. The N_port establishes a connection to a
Fabric element (e.g., a switch) having a fabric port or F_port.

Adapter 114 may also be configured to support Fibre Chan-
nel over Ethernet (FCOE) that has been developed to handle
both Ethernet and Fibre Channel traffic in a storage area
network. This functionality would allow Fibre Channel to
leverage Ethernet (for example, 10 Gigabit) networks while
preserving the Fibre Channel protocol/links.

“RoCE” (Remote Direct Memory Access (RDMA) over
Converged Ethernet) is a network protocol that allows remote
direct memory access over an Ethernet network. RoCE is a
link layer protocol that allows communication between any
two hosts within the same Ethernet broadcast domain. In one
embodiment, adapter 114 is configured to support the RoCE
protocol.

The iSCSI standard is based on Small Computer Systems
Interface (“SCSI”), which enables host computer systems to
perform block data input/output (“I/O”) operations with a
variety of peripheral devices including disk and tape devices,
optical storage devices, as well as printers and scanners. A
traditional SCSI connection between a host system and
peripheral device is through parallel cabling and is limited by
distance and device support constraints. For storage applica-
tions, iSCSI was developed to take advantage of network
architectures based on Fibre Channel and Gigabit Ethernet
standards. iSCSI leverages the SCSI protocol over estab-
lished networked infrastructures and defines the means for
enabling block storage applications over transmission control
protocol/Internet Protocol (TCP/IP) networks. iSCSI defines
mapping of the SCSI protocol with TCP/IP.

Adapter 114:

FIG. 1B shows a block diagram of adapter 114, according
to one embodiment. Adapter 114 may be configured to pro-
cess packets complying with a plurality of protocols, includ-
ing Ethernet, Fibre Channel, RoCE, FCOE, iSCSI and others.
The term frame or packet as used herein means information
that is sent or received by adapter 114 using one or more
protocols/standards.

In one embodiment, adapter 114 may include a plurality of
processor complexes 148A-148B and a general-purpose pro-
cessor 162. Each processor complex 148 A-148B may include
one or more processors. In another embodiment, adapter 114
may only include a single processor complex with one or
more processors. The processor complexes 148A, 148B are
configured to perform various functions, for example, pro-
cessing packets complying with different protocols, includ-
ing FC, FCoE, RoCE, and/or iSCSI. Processor complexes
148A, 148B interface with a message queuing system
(“MQS”) 150 that fetches messages for the processor com-
plexes 148A, 148B.

In one embodiment, any processor of a processor complex
may be used to process a message complying with any of the
protocols. In conventional systems, typically, a dedicated
processor/hardware device is used for processing packets
complying with different protocols. For example, a FC pro-
cessor is used to process FC packets, an FCoE processor is
used to process FCoE packets and an iSCSI processor is used
to process iSCSI packets. Because conventional systems use
dedicated processors/hardware devices, they are not very
flexible and can become very expensive as the number of
protocols continue to increase. Furthermore, the dedicated
processor approach can be inefficient from a load balancing
perspective, for example, if there are more FCoE packets
compared to iSCSI packets, then the iSCSI processor may be
idle, while the FCoE processor may be over-utilized. The
approach of the adaptive embodiments described herein is to

US 9,229,893 B1

5

process messages efficiently and then make them available to
any of the processors of a processor complex for processing.

The embodiments described herein provide a flexible solu-
tion, where a processor from either processor complex 148 A-
148B may be configured to process any message complying
to any of the supported protocols. The MQS 150 efficiently
sends messages to the processors and the processors process
those messages accordingly. By not using dedicated proces-
sors, one is able to better load balance message processing
among the processors.

The general-purpose processor 162 (also referred to herein
as processor 162) may be used for performing adapter 114
configuration/management related operations as well as for
providing information to an external computing system (not
shown). Processor 162 has access to a memory module 164
(shown as RAM 164) for storing information.

Adapter 114 includes a memory interface module (MIM)
172 that manages access to local memory 168, host memory
106 or any other external memory by a plurality of clients/
modules, for example, processor complex 148A-148B, pro-
cessor 162, a host queue manager (“HQM”) 142, a memory
list manager (also referred to as “MLM”) 170, a port complex
154 and others. In another embodiment, MIM 172 may con-
trol access to local memory 168, the host memory 106 and to
any other external memory attached to adapter 144.

Adapter 114 interfaces with host system 102 via an inter-
face 126 and link 124. In one embodiment, link 124 may be a
PCI-Express link and interface 126 may be a PCI-Express
interface with logic and circuitry to send and receive infor-
mation packets complying with the PCI-Express standard.
Interface 126 includes a sub-module 128 (shown as PTH)
having a plurality of locations for temporarily storing infor-
mation, for example, a transmit side first-in-first-out (FIFO)
130A, a buffer 130B used by the general purpose processor
162 and MIM 172 and a receive side buffer 130C. The trans-
mit side buffer 130A is used to store and reorder packets that
are received from host 102 and then transmitted by adapter
114. The receive side buffer 130C stores packets that are
received by port complex 154 and then forwarded to host 102.

A plurality of direct memory access (DMA) modules are
also provided to access link 124 for sending and receiving
information from host 102. For example, a transmit DMA
module 132 having a transmit side processor 132A is pro-
vided for managing packets on the transmit side, i.e. sent by
adapter 114 to other devices. A receive DMA (or Rx DMA)
module 138 having a receive side processor 138A is provided
to access link 124 for sending information to host 102
received via port complex 154. Details regarding the Rx
DMA module 138 are provided below.

A generic DMA module 136 is also provided for enabling
communication between general processor 162 and host 102.
The generic DMA module 136 may also be used to interface
with HQM 142 for providing access to host memory 106. A
MIM DMA module 134 is provided so that the MIM 172 is
able to interface with host 102 and host memory 106 via link
124.

In one embodiment, HQM 142 coordinates IOCB (input/
output control block) and packet movement between host 102
and various modules of adapter 114. HQM 142 may include
a buffer manager 142 A that manages buffers used for storing
packets received from another device; a completion manager
142B uses a completion processor 144 for managing comple-
tion notifications received from different modules of adapter
114; and a scheduling manager 142C that uses a scheduling
processor 146 for coordinating IOCB movement from the
host system 102 and interfacing with MQS 150.

10

15

20

25

30

40

45

50

55

60

65

6

In one embodiment, port complex 154 that is used for
sending and receiving information includes a plurality of
ports 160A-160D, a receive side (may also be referred to as
Rx) buffer 156A and a transmit side (may also be referred to
as Tx) buffer 156B. Ports 160A-160D are configured to oper-
ate at different rates and/or comply with different protocols,
for example, 1G/10G/20G/40G/100G and others. The term
rate as used herein means an amount of information that a port
can handle within a unit time, for example, a second. Ports
160A-160D may be configured to process packets complying
with different protocols, for example, Fibre Channel, Ether-
net, RoCE, FCOE and others. The adaptive embodiments
described herein are not limited to any particular protocol or
transfer rate.

Incoming packets are received by ports 160A-160D and
temporarily stored at Rx buffer 156 A. Rx DMA module 138
then moves the packets to its proper destination, as described
below in detail. On the transmit side, packets are received
from host system 102 and then stored at Tx buffer 156B
before being transmitted to a destination by one of the ports
160A-160D.

In one embodiment, Rx DMA module 138 is configured to
pre-process more than one control block at the same time.
Different control blocks may have different process requests
and may end-up at different durations. By simultaneously
pre-processing more than one control block for DMA opera-
tions, adapter 114 does not have to wait to pre-process a
control block after a DMA operation ends. The structure and
various interfaces for Rx DMA module 138 are described
below with respect to FIGS. 1C and 2.

Rx DMA Module 138:

FIG. 1C shows a block diagram of Rx DMA module 138
interfacing with various modules, for example, PTH 128,
HQM 142, generic DMA engine (GDE) 136, MIM 172 and
MLM 170, according to one embodiment.

Rx DMA module 138 receives packets from receive buffer
156 A that are then forwarded to host processor via link 124.
Rx DMA module 138 also receives packet related informa-
tion from MIM 172. The information is used to process pack-
ets.

Rx DMA module 138 receives anonymous buffer informa-
tion from HQM 142. The buffers are at host memory 106 and
are used to store packets that are DM Aed by Rx DMA module
138. Details regarding Rx DMA 138 and its components are
provided below with respect to FIG. 2.

In one embodiment, various adapter 114 components gen-
erate control blocks for using link 124 to send information to
the host processor 104 via DMA operations. In conventional
systems, the control blocks requests are pre-processed seri-
ally, i.e. after a first control block is pre-processed, another
control block is selected and processed. The embodiments
disclosed herein pre-process control blocks in parallel, so that
when DMA operations for a first control block are completed,
the DMA operations for the second control block can be
executed immediately.

FIG. 2 shows a detailed block diagram of Rx DMA module
138, according to one embodiment. In one embodiment, Rx
DMA module 138 includes the processor 138A and a control
unit 200 for pre-processing control blocks. In another
embodiment, Rx DMA module 138 may just have processor
138A or control unit 200 for pre-processing control blocks.
Processor 138A interfaces with GDE 136 and MLM 170 via
interface 136A and 170A, respectively, to send and receive
control information.

Rx DMA module 138 receives packets from receive buffer
156 A or MIM 172 and then forwards the packets to PTH 128
for delivery to host buffers (not shown). Rx DMA module 138

US 9,229,893 B1

7

also transfers completion packets from HQM 142. The infor-
mation regarding data packets at receive bufter 156A and/or
MIM 172 is placed in a control block by processor complex
148 or generic processor 162. The Rx DMA module 138
accepts control blocks as they become available and pre-
processes them. The following provides a brief description of
the various functional blocks of FIG. 2.

Arbiter 206 of Rx DMA module 138 receives control
blocks from processor complex 148 and/or processor 162 and
moves the control blocks to a buffer 202. Arbiter 206 arbi-
trates and selects between the control blocks.

Buffer 202 is a memory storage location (for example, a
random access memory (RAM)) that is used to store control
blocks received from arbiter 206. Buffer 202 may include
more than one queue (for example, 8) to store packets for
different traffic class and is managed by a queue manager 204.
The control blocks may be stored based on a queue number.
Queue sizes are configurable and may vary. Buffer 202 also
maintains an entry count for each queue to keep track of valid
control blocks for a given queue.

Queue manager 204 retrieves control blocks from buffer
202 queues and transfers the control blocks to the control unit
200 for pre-processing. In one embodiment, queue manager
204 may implements a quality of service (QOS) for selecting
control blocks from each queue. The queue manager 204 also
maintains a control block count for each queue. The count is
increased when a control block is added and decreased when
a control block is unloaded.

RxB Interface 224 is a DMA interface that is used to fetch
packets from Rx buffer 156 A and then place them in a data
FIFO (first-in-first out) 222. Data FIFO 222 is a temporary
memory storage location that operates based on FIFO
scheme.

RxB interface 224 includes a plurality registers 226 for
storing DMA requests. Control unit 200 with packet
addresses configures the registers 224-226. Each request
transfers a packet from RxBuffer 156A. As mentioned above,
more than one control block can be pre-processed at any given
time. Data from data FIFO 222 is provided to a digest module
220 that is described below in detail.

MIM interface 174 is a DMA interface that is used to obtain
information (for example, address list control blocks (AL-
CBs), digest values and data packets from the local memory
168 managed by MIM 172. Interface 174 includes a DMA
register set 173 that may be used to store one or more DMA
requests. The information received from MIM 172 is pro-
vided to processor 138A for processing via an external
dynamic random access memory (DRAM) interface 203.

Rx DMA module 138 includes the digest module 220 that
interfaces with the Rx DMA module processor 138A for
sending and receiving digest values and information. The
digest values are appended to data packets that are received
from FIFO 222, before being sent out via PTH 128.

Digests are 4-byte fields appended to the end of an iSCSI
PDU, which are a CRC calculation over the data portion of a
PDU. iSCSI Header Digests are 4-byte fields appended to the
end of a 48-byte iSCSI PDU Header, which are a CRC cal-
culation over the header portion of the PDU. Digests may be
based on industry standards, for example, standards specified
by the T10 committee of INCITS (International Committee
on Information Technology Standards) that is accredited by
the American National Standards Institute (ANSI). T10 pro-
vides SCSI interface and command set standards. T10 can
define digest format and requirements.

Control unit 200 sets up DMA interface to transfer infor-
mation from RxBuffer 156 A/MIM 172 to PTH 128. If a
control block needs a digest context block, then the control

20

30

40

45

8

unit 200 passes part of the control block to CPU 138A to
retrieve the digest context block from MIM 172.

Control unit 200 fetches the control blocks from buffer
202, sets up the DMA interface to receive the packet from
RxBuffer 156 A, sets up the PTH DMA requests and transfers
completion to HQM 142. Control unit 200 pre-processes
more than one control block at the same time, which reduces
any delay due to pre-processing.

PTH DMA module 206 includes a PTH interface 208, a
plurality of register sets 212A-212N to store DMA requests
and a byte packer 210. The DMA module 206 forwards data
packets to PTH 128, selects data from data FIFO 218 and DIF
(data integrity field) information from DIF FIFO 216, while
completions from HQM 142 are selected from FIFO 220. A
multiplexer 214 is used to select from FIFOs 216, 218 and
220, respectively.

DIFs are 8-byte fields appended to each block of data. A
DIF contains a Reference Tag, Application Tag, and a CRC
value. As DMA occurs, the CRC is determined for each DIF
on each data block during a transfer. Depending on packet
data, Rx DMA module 138 may need to insert DIFs periodi-
cally into the data stream, validate and remove them from the
data stream, or validate them and keep them in the data
stream.

In one embodiment, more than one control block may be
simultaneously setup by control unit 200. For example,
assume that DMA register set 212A is assigned to a first
control block CB1. CB1 May have 5 DMA requests. A second
control block. CB2 that may have 2 requests may be assigned
to DMA registerset 2 212B. The DMA operation for CB1 will
start first using register set 212A. CB2 will be pre-processed
and ready at register 212B waiting for the DMA operation to
end for CB1. This is efficient because CB2 pre-processing is
complete before CB1 DMA operation ends. In conventional
systems, CB2 is pre-processed after CB1 DMA operations
are complete. Since different control blocks may have difter-
ent number of DMA requests, the delay in pre-processing
CB2 can cause significant performance degradation.

Process Flows:

FIG. 3 shows a process 300 for simultaneously pre-pro-
cessing control blocks (or IOCBs), according to one embodi-
ment. Process 300 is used to pre-process more than one con-
trol block so that when the DMA operations associated with
a first control block are completed, the DMA operations
associated with a second control block can begin without any
delay. Process 300 maintains in-order processing, while
expediting DMA operations, as described below in detail.

The process begins in block B302, when host 102 and
adapter 114 are initialized and operational. One or more
control block have already been received by adapter 114 and
the control block may be to send data to host 102 at an
anonymous buffer or ata specific memory location, may be to
send a completion response or a notification to processor
complex 148/processor 162.

In block B304, the first control block is pre-processed. The
DMA operations for the first control block are initiated in
block B306. While the first control block is being processed,
a second control maybe received in block B308. It is note-
worthy that the second and the first control block may be
received at the same time or immediately after each other.

In block B310, the second control block is pre-processed
while the DM A operations of the first control block are being
processed. It is noteworthy that when the first and second
control blocks are received at the same time, then the control
blocks are pre-processed at the same time. Once the DMA
operations for the first control block are completed, the DMA
operations for the second control block are already config-

US 9,229,893 B1

9

ured. Thereafter, the DMA operations for the second control
block are processed in block B312. The nature of pre-pro-
cessing will depend on the IOCB type, as described below
with respect to FIG. 4.

An example of using process 300 is shown in FIG. 3B that
allows Rx DMA 138 to pre-process more than one control
block in parallel. Process 300 may use more than one register
set for setting up DMA operations. For example, Pair 0 314
includes a register set 0 and register set 1, while Pair 1 316
includes register sets 2 and 3. Each register set includes a
plurality of registers that are used to store DMA requests. The
register sets may be located at module 206, described above
with respect to FIG. 2.

A control block may have different number of requests and
may be assigned to one pair of DMA register sets. For
example, assume a control block CB1 includes 5 requests.
CB1 is assigned to Register Set 0. A second control block may
have 2 requests and is assigned Set 2 of Pair 2 316. The DMA
operations involving Set0 start first for in-order delivery. Set
2 is used by CB2, while Set 0 requests are being processed.
When CB1 ends, then CB2 is immediately processed from
Set2, without any delay. This allows adapter 114 to process
multiple control blocks at the same time and maintain in-
order delivery.

FIG. 4 shows a process 400 for pre-processing control
blocks, according to one embodiment. As described above,
the control blocks are pre-processed simultaneously and the
DMA requests are generated and configured, such that any
delays due to pre-processing are reduced.

The process begins in block B402, after one or more con-
trol block has been received and stored at queue 202. The
control block is retrieved by control unit 200 in block B404.
The control block may include various operation codes, for
example, 0x0 indicates to the control unit 200 that the data
needs to be sent to one or more anonymous buffers at host
memory; 0x1 indicates that data is to be sent to a specific
memory address of the host memory; 0x2 indicates to use an
address list to send data, 0x3 indicates to use a scatter gather
list to send data, 0X4 indicates to send a completion to the
host system; 0x5 indicates to send a processor complex 148
notification and 0x6 indicates to send the control block to
processor 138A of Rx DMA module 138 and 0x7 may be a
reserved code. It is noteworthy that the foregoing operation
codes are used as examples and are not intended to limit the
adaptive embodiments. The different operation codes require
different pre-processing of control blocks.

Blocks B408-B420 illustrate control block pre-processing
when data is sent to one or more anonymous buffers. Blocks
B422-B432, B418 and B420 illustrate control block pre-
processing when data is sent to a specific host address. Blocks
B434-B438, B430, B432, B418 and B420 illustrate control
block pre-processing when data is sent using an address list
and/or a scatter gather list. Blocks B440-B444 illustrate con-
trol block pre-processing when a completion is sent. The
pre-processing for different operation codes is now described
in detail.

In block B408, the control unit 200 reads the operation
code from the control block and determines that data has to be
sent to one or more anonymous buffer. In block B310, control
unit 200 requests a buffer pool from HQM 142. In block
B412, the control unit 200 sets up the register sets (for
example, 224 and/or 226) at RXB I/F 226 and the register sets
(for example, 212A and/or 212B) at module 206. As
described above, multiple register set pairs are set up so that
data can be moved efficiently and in order.

Inblock B414, the control unit 200 verifies ifthe buffer size
is greater than the packet size. If not, then in block B416, the

10

15

20

25

30

35

40

45

50

55

60

65

10
control unit 200 requests additional buffers from HQM 142.
Thereatfter, in block B418, the control unit 200 determines if
a “Nxt” bit is set in the control block. The Nxt bit indicates to
the control unit 200 that it should retrieve a next control block.
If the next control block is a completion message, then in
block B420, the buftfer pool is appended to the completion
message and sent to HQM 142. Thereafter, the pre-processing
ends in block B444.
In block B422, control unit 200 determines that the control
block is for sending data to a specific host address. In block
B424, the control unit 200 requests the host bufter pool iden-
tified by the specific address. In block B426, the DMA reg-
isters are setup similar to block B412, described above. In
block B428, the control unit 200 requests additional buffers
from HQM 142, if the transfer length of the request is greater
than the available buffer size.
Inblock B430, the control unit 200 determines if any digest
values are needed. If yes, then a request for digest values is
generated and issued to MIM 172. The digests are obtained
from MIM 172 and then processed in block B432. The pro-
cessed digest values are appended to the data blocks that are
to be transferred and the process then moves to block B418
that is described below.
In block B434, control unit determines that data is to be
sent using a scatter gather list or an address list. In block
B436, the DMA registers at the RXB Interface 226 are setup.
A request to obtain an address list control block (ALCB) is
issued to MIM 172. MIM 172 provides the ALCB to the
control unit 200. Thereafter, the process moves to block
B430.
Inblock B440, the control unit 200 determines if a comple-
tion has to be sent. In block B442, control unit 200 sets up the
DMA requests for sending completions and the process ends
in block B444.
In one embodiment, a plurality of control blocks is pre-
processed simultaneously. The control blocks may be for
different operations and may involve different number of
DMA requests. Since the DMA registers are setup simulta-
neously, there is no delay due to pre-processing of control
blocks.
While the present disclosure is described above with
respect to what is currently considered its preferred embodi-
ments, it is to be understood that the disclosure is not limited
to that described above. To the contrary, the disclosure is
intended to cover various modifications and equivalent
arrangements within the spirit and scope of the appended
claims.
What is claimed is:
1. A machine implemented method, comprising:
storing a plurality of control blocks at a memory of a
receive module of a device coupled to a computing
device, where the control blocks store information
regarding data packets stored at a receive buffer acces-
sible to the receive module; wherein the device includes
a plurality of processing modules and a memory inter-
face that manages a local memory for storing informa-
tion regarding the plurality of control blocks;

retrieving at least a first control block and a second control
block from the memory;

assigning a first direct memory access (DMA) register set

to the first control block and a second DMA register set
to the second control block;

simultaneously pre-processing the first control block and

the second control block to configure the first DMA
register set and the second DMA register set;

starting a first DMA operation for the first control block,

while configuring the second DMA register set; and

US 9,229,893 B1

11

starting a DMA operation for the second control block,
immediately after DMA operations for the first control
block are completed;
wherein pre-processing of a control block is based on an
operation type and includes:
determining if data is to be moved to a specific host
address, at least one anonymous buffer, or an address
list;
requesting a buffer pool based on the determination; and
setting up an appropriate register set pair.
2. The method of claim 1, wherein the first control block
includes a plurality of DM A requests that are different from a
number of DMA requests for the second control block.
3. The method of claim 1, wherein the device is an adapter
for processing input/output requests for accessing data stored
in a storage area network.
4. The method of claim 1, wherein the pre-processing of the
first control block and the second control block is based on a
control block type.
5. The method of claim 4, wherein the control block type is
to place data at anonymous host memory location.
6. The method of claim 4, wherein the control block type is
to send a completion message.
7. The method of claim 4, wherein the control block is for
sending data based on an address list.
8. A non-transitory, machine readable storage medium
storing executable instructions, which when executed by a
machine, causes the machine to perform a method, the
method:
storing a plurality of control blocks at a memory of a
receive module of a device coupled to a computing
device, where the control blocks store information
regarding data packets stored at a receive buffer acces-
sible to the receive module; wherein the device includes
a plurality of processing modules and a memory inter-
face that manages a local memory for storing informa-
tion regarding the plurality of control blocks;

retrieving at least a first control block and a second control
from the memory;

assigning a first direct memory access (DMA) register set

to the first control block and a second (DMA) register set
to the second control block;

simultaneously pre-processing the first control block and

the second control block to configure the first DMA
register set and the second DMA register set;

starting a first DMA operation for the first control block,

while the second DMA register set is ready for starting a
DMA operation for the second control block, immedi-
ately after DMA operations for the first control block are
completed;

wherein pre-processing of a control block is based on an

operation type and includes:

determining if data is to be moved to a specific host
address, at least one anonymous buffer, or an address
list;

requesting a buffer pool based on the determination; and

setting up an appropriate register set pair.

9. The storage medium of claim 8, wherein the first control
block includes a plurality of DMA requests that are different
from a number of DMA requests for the second control block.

5

10

20

25

30

35

40

45

50

55

12

10. The storage medium of claim 8, wherein the device is
an adapter for processing input/output requests for accessing
data stored in a storage area network.

11. The storage medium of claim 8, wherein the pre-pro-
cessing of the first control block and the second control block
is based on a control block type.

12. The storage medium of claim 11, wherein the control
block type is to place data at anonymous host memory loca-
tion.

13. The storage medium of claim 11, wherein the control
block type is to send a completion message.

14. The storage medium of claim 11, wherein the control
block is for sending data based on an address list.

15. A system, comprising:

a receive module of a device, executing instructions for:

storing a plurality of control blocks at a memory, where the

control blocks store information regarding data packets
stored at a receive buffer accessible to the receive mod-
ule;

retrieving at least a first control block and a second control

from the memory;

assigning a first direct memory access (DMA) register set

to the first control block and a second (DMA) register set
to the second control block;
simultaneously pre-processing the first control block and
the second control block to configure the first DMA
register set and the second DMA register set; and

starting a first DMA operation for the first control block,
while the second DMA register set is ready for starting a
DMA operation for the second control block, immedi-
ately after DMA operations for the first control block are
completed;

wherein pre-processing of a control block is based on an

operation type and includes:

determining if data is to be moved to a specific host
address, at least one anonymous buffer, or an address
list;

requesting a buffer pool based on the determination; and

setting up an appropriate register set pair.

16. The system of claim 15, wherein the first control block
includes a plurality of DMA requests that are different from a
number of DMA requests for the second control block.

17. The system of claim 15, wherein the device is an
adapter for processing input/output requests for accessing
data stored in a storage area network.

18. The system of claim 15, wherein the pre-processing of
the first control block and the second control block is based on
a control block type.

19. The system of claim 18, wherein the control block type
is to place data at anonymous host memory location.

20. The system of claim 18, wherein the control block type
is to send a completion message.

21. The system of claim 15, wherein the device includes a
plurality of processing modules and a memory interface that
manages a local memory for storing information regarding
the plurality of control blocks.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,229,893 B1 Page 1of1
APPLICATION NO. : 14/264957

DATED : January 5, 2016

INVENTOR(S) : Pham et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Drawings

Sheet 4 of 7, Fig. 2, line 1, delete “CB-Arbitor” and insert -- CB-Arbiter --, therefor.
In the Specification

Column &, line 58, after “control” insert -- block --, therefor.

In the Claims

Column 11, line 38, in Claim &, after “control” insert -- block --, therefor.

Column 12, line 21, in Claim 15, after “control” insert -- block --, therefor.

Signed and Sealed this
Thirteenth Day of September, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

